Search results for "Zero temperature"
showing 10 items of 10 documents
Role of dimensionality in spontaneous magnon decay: easy-plane ferromagnet
2014
We calculate magnon lifetime in an easy-plane ferromagnet on a tetragonal lattice in transverse magnetic field. At zero temperature magnons are unstable with respect to spontaneous decay into two other magnons. Varying ratio of intrachain to interchain exchanges in this model we consider the effect of dimensionality on spontaneous magnon decay. The strongest magnon damping is found in the quasi-one-dimensional case for momenta near the Brillouin zone boundary. The sign of a weak interchain coupling has a little effect on the magnon decay rate. The obtained theoretical results suggest possibility of experimental observation of spontaneous magnon decay in a quasi-one-dimensional ferromagnet C…
Toward shrimp consumption without chemicals: Combined effects of freezing and modified atmosphere packaging (MAP) on some quality characteristics of …
2015
The combined effects of freezing and modified atmosphere packaging (MAP) (100% N2 and 50% N2 + 50% CO2) on some quality characteristics of Giant Red Shrimp (GRS) (Aristaeomorpha foliacea) was studied during 12-month storage. In particular, the quality characteristics determined proximal and gas compositions, melanosis scores, pH, total volatile basic-nitrogen (TVB-N), thiobarbituric acid (TBA) as well as free amino acid (FAA). In addition, the emergent data were compared to those subject to vacuum packaging as well as conventional preservative method of sulphite treatment (SUL). Most determined qualities exhibited quantitative differences with storage. By comparisons, while pH and TVB-N sta…
Scaling behavior of Tan's contact for trapped Lieb-Liniger bosons: From two to many
2018
We show that the contact parameter of N harmonically trapped interacting one-dimensional bosons at zero temperature can be analytically and accurately obtained by a simple rescaling of the exact two-boson solution, and that N-body effects can be almost factorized. The small deviations observed between our analytical results and density matrix renormalization group (DMRG) calculations are more pronounced when the interaction energy is maximal (i.e., at intermediate interaction strengths) but they remain bounded by the large-N local-density approximation obtained from the Lieb-Liniger equation of state stemming from the Bethe ansatz. The rescaled two-body solution is so close to the exact one…
The imaginary part of the nucleon self-energy in hot nuclear matter
1996
A semiphenomenological approach to the nucleon self-energy in nuclear matter at finite temperatures is followed. It combines elements of Thermo Field Dynamics for the treatment of finite temperature with a model for the self-energy, which evaluates the second order diagrams taking the needed dynamics of the NN interaction from experiment. The approach proved to be accurate at zero temperature to reproduce Im(Sigma) and other properties of nucleons in matter. In the present case we apply it to determine Im(Sigma) at finite temperatures. An effective NN cross section is deduced which can be easily used in analyses of heavy ion reactions.
Initial correlations effects on decoherence at zero temperature
2004
We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is described then by a linear Hamiltonian whose form is analogous to phenomenological Hamiltonians previously adopted to describe the free particle-bath interaction. We study how the time dependence of decoherence evolution is related with initial particle-bath correlations. We show that decoherence is related to the time dependent dressing of the particle. Moreover because decoherence induced by the T=0 bath is very rapid, we make some considerations…
Aroma Volatility from Aqueous Sucrose Solutions at Low and Subzero Temperatures
2004
International audience; The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility rem…
Dynamic rigidity transition.
2003
An inflated closed loop (or membrane) is used to demonstrate a dynamic rigidity transition that occurs when impact energy is added to the loop in static equilibrium at zero temperature. The only relevant parameter in this transition is the ratio of the energy needed to collapse the loop and the impact energy. When this ratio is below a threshold value close to unity, the loop collapses into a high-entropy floppy state, and it does not return to the rigid state unless the impact energy can escape. The internal oscillations are in the floppy state dominated by 1/f(2) noise. When the ratio is above the threshold, the loop does not collapse, and the internal oscillations resulting from the impa…
Transient Reversible Growth and Percolation During Phase Separation
1988
Binary mixtures when quenched into the two-phase region exhibit transient percolation phenomena. These transient percolation phenomena and the underlying mechanism of transient reversible growth are investigated. In particular, one of the possible dynamical percolation lines between the dynamical spinodal and the line of macroscopic percolation is traced out. Analyzing the finite size effects with the usual scaling theory one finds exponents which seem to be inconsistent with the universality class of percolation. However, at zero temperature, where the growth is non-reversible and the transition of a sol-gel type, the exponents are consistent with those of random percolation.
Zero Temperature Magnetoresistance of the HF Metal: Enigma of $$\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}$$
2014
To understand the nature of field-tuned metamagnetic quantum criticality in the ruthenate \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) is one of the significant challenges in the condensed matter physics. It is established experimentally that the entropy has a peak in the ordered phase. It is unexpectedly higher than that outside latter phase, while the magnetoresistivity varies abruptly near the ordered phase boundary. We demonstrate unexpected similarity between \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) and HF metals expressing universal physics that transcends microscopic details. Our \(T-B\) phase diagram of \(\mathrm{Sr}_{3}\mathrm{Ru}_{2}\mathrm{O}_{7}\) explains main featu…
QCD at non-zero temperature from the lattice
2015
I review the status of lattice QCD calculations at non-zero temperature. After summarizing what is known about the equilibrium properties of strongly interacting matter, I discuss in more detail recent results concerning the quark-mass dependence of the thermal phase transition and the status of calculations of non-equilibrium properties.